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Rice is a staple food source for much of the world and most of it is grown
in paddies which remain flooded for a large part of the growing season. This
anaerobic environment is ideal for the activities of methanogenic bacteria, that
are responsible for the production of methane gas, some of which is released into
the atmosphere. In order to better understand the role that rice cropping plays
in the levels of atmospheric methane, several models have been developed to
predict the methane flux from the paddies. These models generally utilize some
type of nominal plant growth curve based on one or two pieces of ground truth
data. Ideally, satellite data could be used instead to provide these models with
an estimate of biomass change over the growing season, eliminating the need for
related ground truth. A technique proposed to accomplish this is presented here,
and results that demonstrate its success when applied to rice cropping areas of
Texas are discussed. Also presented is a method for utilizing satellite data to map
rice cropping areas that could eventually aid in a scheme for populating a GIS-type
database with information on exact rice cropping areas. Such a database could
then be directly tied to the methane emission models to obtain flux estimates for

extensive regional areas.
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Chapter 1

Introduction and Background

The study of rice agriculture is necessary for both the importance of rice as
a vital food source and because of the fact that cultivating it has an unfortunate
byproduct, namely methane gas. As a food source, rice is a staple for a large
majority of the world’s population, especially in Asia. Because the populations of
many Asian nations are increasing at rapid rates, the production of rice will need
to similarly increase. In 1989, it was estimated that the demand for rice would
increase by 65% by the year 2019 [26]. Rice crops are considered to be one of
the primary anthropogenic sources of methane gas [3],[5], [18], [25], and [43]. A
reason for concern is that this gas is a so-called ”greenhouse” trace gas and given
its increasing levels in the atmosphere, is thought to contribute to the suspected
global warming phenomenon. Some estimate that methane may contribute up to
20% to the global warming effect [34].

Trace gas emissions from anthropogenic sources is an issue that generates
great worldwide interest because of the fact that mankind is very likely affecting
the current and future climate in potentially negative ways. In an effort to better
understand these effects, scientists and engineers are conducting research on all of
the varied fronts which relate to climate change and biosphere/atmosphere inter-
actions. The study of global warming through increasing concentrations of green-

house gases is one arca which has received much media and scientific attention.



Rescarch fueled by debates on this topic is being conducted on numerous, inter-
related ffonts in an effort to better understand the complex relationship betiveen
human activities and the carth’s climate. The research ranges from attempting
to verify if the observed data even supports the existence of an anthropogenically
generated global-warming phenomenon, to identification of sources and sinks of
the trace gases, to measuring the source strengths, to studies which focus on mod-
eling the processes which generate the gases, and finally, to trying to project their
impact on the global climatic system [10].

Some of the more commonly known sources of greenhouse gases are related
to industry and transportation. Carbon dioxide, CO,, from automobile emis-
sions is one such example. Lesser known are sources from natural and cultivated
vegetation, such as the methane, CHy, resulting from rice cropping. While the
concentration of atmospheric methane is significantly less than that of carbon
dioxide, CH4 has been estimated to have up to 32 times the insulating capability
of carbon dioxide, making it an important gas to monitor [26].

The remainder of this chapter will provide some additional background in-
formation on the effects dfirziricir:r}'(r)spheric mefhane, and the role that rice agriculture
plays as a source in the methane budget. This will be followed by a brief descrip-
ti'oleﬁ of efforts to model trhisr sou:fcerof atmospheric methane. Finally, this chapter
will end with a statement of the hypotheses of this thesis, at which time a descrip-

tion of the information contained in the rest of this document will be provided.

1.1 Atmospheric Methane

Of the constituent gases in the atmosphere, methane is considered a trace
gaé because its abundance is very small Coﬁigéred to the major components, as

can be noted in Table 1.1.



Table 1.1: Chemical Composition of the Atmosphere - Selected Constituents,
adapted from [5]

[ Constituent [ Chemical Formula | Volume Mixing Ratio (dry air) |
Nitrogen N, 78.084 %
Oxygen 0, 20.948 %
Argon Ar 0.934 %
Carbon Dioxide CO, 360 ppmv
Neon Ne 18.18 ppmv
Helium He - 5.24 ppmv
Methane CH, 1.7 ppmv
Hydrogen H, 0.55 ppmv
Nitrous Oxide N.O 0.31 ppmv
Carbon Monoxide CO 50-200 ppbv
Ozone (tropospheric) O3 10-500 ppbv
Ozone (stratospheric) O; 0.5-10 ppm

Of course, a relatively small amount of a trace gas in the atmosphere does
not imply that it can not exert a significant impact on atmospheric chemistry or on
the behavior of the atmosphere in general. One commonly talked about trace gas
is ozone. Most people are familiar with the hole in the stratospheric ozone layer
over Antarctica and the banning of certain chemicals, such as chlorofluorocarbons
(CFCs), thought to have caused it. Many people in larger cities are also aware of
ozone in the troposphere because there are days when they are warned to minimize
outdoor activity because of its harmful effects.

Like ozone, methane is found in both the troposphere and stratosphere,
and affects the atmosphere in each through different processes. The effects of an
atmospheric constituent can be either direct or indirect. In the case of methane,
it is both. The direct effect of atmospheric methane is radiative forcing, which

derives from the fact that the spectrum of methane has absorption bands which,

in essence, cause radiative energy to become trapped in the atmosphere rather



than being released into space. The indirect effects of methane derive from the
oxidation of methane in the atmoséhere by hvdroxyl, OH, which is the primary
sink for methane. In the troposphere, the oxidation of CH, leads to the formation
of CH,0 (formaldehyde), CO, and in the presence of sufficient NO,, ozone. In
the stratosphere, oxidation of methane results in H,O [50]. Thus, the greater
the levels of methane in the atmosphere, the greater the decrease in the oxidizing
capacity of the atmosphere, and the greater the increase in other undesirable trace

gases.

1.2 Rice Paddies as a Source of Methane

The largest vegetative source of methane is attributable to the cultivation of
rice. Thus, rice paddies and their role as a source of CH4 are important subjects
to study. Before discussing the role of rice specifically as a source of atmospheric
methane, a brief description of the chemical processes attributable to methane
flux from wetland areas in general should come first. These processes can be
generalized into: production, consumption, and transport.

The production of methane occurs through a series of microbiological pro-
cesses which are controlled primarily by the absence of oxygen, such as in flooded
waters, and the availability of readily degradable carbon. These two conditions
are required for the functioning of the bacteria which produce methane. These
methanogenic bacteria, or methanogens, can work only after organic matter has
been broken down into usable substrates, such as hydrogen and acetate, by other
types of bacteria [35]. The source of the organic matter from which substrates
are prqdugedwg@;} come from any of ,t,h,e, frorlrlowing: mineralizable carbon that is
naturally Vo&:;rring in the soil, the decay of carbon amendments added to the soil,

and from the roots of the plants themselves, either by exudation or by decay.




Once methane is produced in the anaerobic soil, some of it is consumed
through oxidation. This process is due to activities of methanotrophic bacteria,
which require oxygen and, of course, methane. There are two places where there
is an oxic/anoxic interface in a flooded environment: at the soil/water interface,
and in the rhizosphere, which is the portion of the soil directly under the influence
of the root system of a plant [41}.

Since water has a low methane solubility, some of the methane produced
which is not oxidized by the methanotrophs may eventually be transported from
the anaerobic soil layer and released into the atmosphere. There are three trans-
port possibilities: plant-mediated, ebullition of gas bubbles, and diffusion through
the soil/water and the water/air interfaces [34]. The debate on the amount of
methane that is transported through each of these pathways is far from settled.
Additionally, the timing of the methane release(s) is under debate.

Most scientists consider that the majority of the methane ﬂux from rice is
derived from plant-mediated transport. In fact, several sources estimate that up
to 90% of the methane flux from rice paddies has been transported through the
aerenchymal system [14]. The aerenchymal system is an intercellular gas-space
system developed in plants that grow in soils that are water-saturated or otherwise
deficient in rhizospheric oxygen. In waterlogged soils, there is measurable move-
ment of oxygen from the roots to the rhizosphere, and this same system allows a
means for the methane to be transported to the atmosphere [31].

Of course, the goal of this type of research is not to lead to any suggestion
that rice cultivation be curtailed. Instead, the goal is to improve estimates of the
atmospheric methane budget which would then lead to a better understanding of
the global climate. It is through improved understanding of the climate system as

a whole, that scientists and governing bodies can more effectively target decreases



for anthropogenic sources of each of the greenhouse gases.

This is not to say that research is not being conducted into ways that rice
cropping practices could be changed in order to mitigate the contribution of rice
to atmospheric methane levels. On the contrary, many studies have been already
been conducted and research is still continuing. It should be recognized that this is
not a simple task. Because much of the rice production takes place in low-income
countries, in order for CH4 flux mitigation strategies to succeed there can be no loss
to the farmer in terms of yield, and no added cost to the farmer in terms of more
expensive cropping practices [23]. But there has been some success, especially
with research conducted to determine the impact of changing rice cultivar and/or
cropping practices on CH, fluxes. Some of those strategies include simpler ones
such as more effective water management and careful selection of soil amendments,
and more complex ones such as the breeding of new cultivars which do not exhibit

as much potential for methanogenesis [48].
1.3 Modeling Methane Emission from Rice Paddies

Because of uncertainties such as those mentioned above on the timing and
mechanisms of methane transport, the actual magnitude of rice as a source of
atmospheric methane is not precisely known. In an effort to remedy this situ-
ation, resecarchers have begun to model each of the three processes mentioned
above (production, consumption, and transport), sometimes as a whole system,
sometimes one process at a time. At the start of this research project, four whole-
system models were identified as candidates for evaluation. These models were
” developedby Dr. Mingkurir Cao[6], Dr. Yao Huangr[l’f], [15}, Dr. Changcheng Li
[unpubhsheidi],and DrPeter ;;;rli’l;(i)dégom [45], [44]. Aftéf careful consideration,

two of the models were eliminated from consideration for study: the Cao model,




because Dr. Cao is no longer working in the same research area, and the Li model
because it is currently undergoing its validation process.

The remaining two models were selected for inclusion in this study. The
van Bodegom model, more mechanistic in nature, was developed at Wageningen
Agricultural University in the Netherlands. The Huang model, based more on
empirical data, was developed at Rice University in Houston, Texas. Although
these models will be described in more detail in later sections, it is important to
note here that although both of these models consider each of the three processes
leading to methane emissions differently, they do have one important thing in
common: the need to describe the growth of the rice plant in order to determine
the rates of methane production, oxidation, and transport. The plant characteris-
tic that is used to define plant growth in both of these models is total aboveground

biomass.

1.4 Research Goals and Objectives

As will be described in Chaptér 2, data derived from remote sensing satellites
has been shown to provide valuable information about vegetation. Because of this,
it was recognized that the biomass information required to model methane flux
from rice paddies might be derived through the use of satellite remote sensing. In
order to test this idea, image data from one satellite sensor, the Advanced Very
High Resolution Radiometer (AVHRR), was utilized. The motivation for selecting
this particular sensor will be described in Chapter 2.

The geographic focus of the work was the Gulf coast region of Texas, one
of the most productive areas of rice cultivation in the world [42]. For this study,
AVHRR imagery was acquired for the 1992-1995 and 1998-1999 growing seasons.

Plant data from two different test sites in Texas was obtained for these six sea-



sons and the success of the methodology used to relate the AVHRR data and
the biomass of rice plants is presented in Chapter 3.- The use of biomass values
estimated from AVHRR as inputs to the two models will be described in Chap-
ters 4 and 5, and a comparison of the resulting methane emission estimates to
methane flux measurements collected in Texas in 1994 will be presented. Chapter
6 will describe a method of detecting rice cropping areas of Texas using AVHRR
imagery, and Chapter 7 will provide a summary and present conclusions of the

thesis research.



Chapter 2

Remote Sensing and the AVHRR Sensor

2.1 Introduction

Satellites have been utilized for over forty years to study the earth, its
natural phenomena, and mankind’s activities upon it. The most obvious benefit
of utilizing satellite imagery is that more land area can be studied at one time
than can be studied by physically visiting the area of interest. Additionally, the
opportunity for repeat coverage of the areas of interest, over long periods of time,
is afforded through the use of satellite imagery.

The selection of the satellite sensor from which one wants to use image data
depends upon the application of interest. Satellite sensors can be categorized
into passive and active sensors. Active imaging sensors utilize their own energy
source to illuminate features of interest, whereas passive systems sense naturally
occurring emitted or reflected energy [21]. Passive sensors, which make up the
majority of systems used today, generally sense wavelengths in the visible and
infrared (IR) portions of the electromagnetic spectrum, although there are some
passive microwave sensors as well. In general, visible and near infrared (NIR)
sensors detect reflected solar radiation, while longer wavelength IR sensors detect
emitted thermal radiation. The study of vegetation using remote sensing, which

will be discussed in the following section, is most often conducted with sensors
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operating in the visible and NIR portions of the spectrum.

2.2 Remote Sensing of Vegetation

The study of natural and cropped vegetation is one of the major applications
for remote sensing, because satellite data can provide information about how
vegetation is changing, if at all, over time and space. The potential for gaining
this type of insight is due to knowledge of how reflected solar radiation is altered
by the vegetation. As mentioned above, sensors which acquire data in the visible
and NIR portions of the spectrum are often utilized, for reasons which will now
be described.

Visible channels owe their utility in studying vegetation to the fact that
pigments, found primarily in the leaves, absorb energy in this wavelength region.
These pigments are responsible for absorbing energy in order to initiate photo-
synthesis, and are primarily chlorophyll, but also carotene, and xanthophyll. The
absorption of visible energy by vegetation is a function of wavelength. In fact,
because chlorophyll-a absorbs more in the blue ( 0.4um-0.54m ) and in the red
( 0.6um-0.7 um ) portions of the spectrum, most vegetation appears green [4].

Sensor channels in the NIR region, from 0.75 pm to 1.35 um, aid in the
study of vegetation because the internal structure of leaves causes high levels of
reflectance to occur. Basically, because there are no pigments which absorb solar
rradirati'qn in this wavelength region, the energy enters the internal structure of
the leaves where some of it is reflected, and the rest is transmitted through the
leaf [24]. Through spectroscopic analysis on individuals leaves, it is known that
approximately 50% of the incident radiatibn is reflected. The reason for this is
due to the changes in indices of refraction between the cell walls in the leaves

and the air spaces between these cells [4]. These visible and NIR features of the
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interaction between solar radiation and vegetation can be seen in the reflectance
spectrum of vegetation shown in Figure 2.1. It should also be noted, that as the
leaves mature, more air spaces are formed between the cells in the leaves, causing
greater reflection in the NIR wavelengths. Additionally, as canopies of leaves
become more dense, the added :ia;ye:r's of leaves provide additional opportunities
for NIR energy to be reflected. TBES, the denser the leaf canopy, the greater the

NIR energy reflection.

60%-
Vegetation Bare Soil
- v“’ //.»—-——-\’. /-\""\.__\
40%-
20%~
0% ~.. Water
04 06 08 10 12 14 16 18 20 22 24
Wavelength (iLm)

Figure 2.1: Examples of Reflectance Spectra for Vegetation, Soil, and Water,
adapted from [21]

2.3 Vegetation Indices

Considerable research has been conducted on the development and testing of
vegetative indices which, generally speaking, are transformations or combinations
of original spectral reflectances collected by remote sensors. Many indices have
been developed which are sensor:sri;;irﬁc, requiring specific bands in the visible

and infrared portions of the spectrum. A widely used index that is applicable
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to any sensor with a channel in the visible portion of the spectrum and one in
the near infrared portion, is called the Normalized Difference Vegetation Index
(NDVI). Through simultaneous collection of overhead imagery and ground mea-
surements, NDVI values have been found to be correlated with vegetative canopy
characteristics such as leaf area index [28]. Numerous other studies of the use of
NDVI, and other vegetation indices, derived from a variety of sensors, have been
conducted. Among them are [32], [33], [36], [11], and [22]. Investigations of the
use of vegetation indices to study specifically rice were conducted by [2], [20], (8],
[37], [38], and [40].

The NDVI is calculated using the reflectance in the visible (noted as VIS)

and NIR channels for each pixel in the image using the following formula:

Reflectancenrr — Reflectancey s

NDVI = - L :
by Reflectancenrr + Reflectanceyrs

The resulting NDVT values range between -1 and 1. Because, as described in the
previous section, vegetation has higher reflectances in the NIR wavelengths than
in the visible wavelengths, NDVTI values for vegetation are always greater than 0,
and as the plants mature and canopies become more dense, the NDVTI values can
be generally expected to increase through the growing season. As vegetation starts
to die off, or become stressed due to disease, the chlorophyll levels in the leaves
begin to decrease and subsequently, the absorption of visible wavelength energy
will decrease as well. Since in this case, the reflectances collected by the visible
channels in a sensor start to increase, the NDVI values will begin to decrease.
An additional use of NDVI derives from the fact that water, soil, and man-made
objects do not have the spectral response functions at all similar to vegetation.
Thus the NDVT values for these objects are lower than for vegetation. Thus, NDVI
is very often used to differentiate vegetated areas from non-vegetated areas.

Other vegetation indicies have been developed and used over the years,
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especially those which are capable of correcting for contributions of reflected en-
ergy from the backgrounds of vegé@_tjgﬁnwj “An example of one of these is the Soil
Adjusted Vegetation Index (SAVI). As the name implies, SAVI adjusts the re-
flectances collected by a sensor such that effect of soil reflectance is removed,
leaving the index to record the response due to vegetation only. The use of SAVI
requires that the soil background of the vegetation of interest be isolated by col-
lecting a raw soil reflectance. In the case of rice paddies, the background for a
majority of the growing season is water, and not soil. Because the paddies are
flooded only after the rice plants have begun to grow, it is not possible to obtain a
reflectance value for the water only. It was thus decided that the only vegetation

index that would be investigated in this thesis was NDVL.
2.4 Application of AVHRR to the Study of Rice

The subsection below will désc}lbethe attributes of the AVHRR sensor
which can be utilized to providéz useﬁxl information on vegetation. Following
that will be a description of the manner in which the imagery was processed and

prepared for application in this study.

2.4.1 The AVHRR Sensor

The AVHRR sensor is carried on-board the National Oceanic and Atmo-
spheric Administration’s (NOAA’s) Polar Orbiting Environmental Satellites, which
are sun synchronous platforms. The sensor acquires data in five channels, which
are defined in Table 2.1 for the most recent platforms. The spatial resolution of
the sensor is 1.1 km at nadir and approximately 6 km at the edge of the scans
(55.4 degrees off-nadir). The relatively coarse spatial resolution allows for images

of extensive land areas to be collected, from which studies of large-scale vegetation
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Table 2.1: AVHRR Channel Specifications, adapted from [13]

| Channel Number Description | Band Width |

visible 0.58 to 0.68 um
reflected infrared | 0.725 to 1.05 um
hybrid infrared | 3.55 to 3.92 um
thermal infrared | 10.3 to 11.3 um
thermal infrared | 11.5 to 12.5 um

UV | W o —

development cycles, vegetation transformations such as tropical deforestation, and
land-cover type classifications can be conducted [27]. One feature of the AVHRR
sensor which offsets the low spatial resolution in comparison to other sensors, such
as the Landsat Thematic Mapper (TM), is the fine temporal resolution it achieves.
As opposed to Landsat TM, which has repeat coverage every 16 days, a given por-
tion of the earth can be imaged between 1-3 times per day with AVHRR, allowing
for the ability to monitor vegetation dynamics over shorter time periods. In this
study, only the image from the pass which occurred over the area of interest in
the afternéon each day was utilized. This pass was selected since it is the closest
to solar maximum.

In deciding to utilize remotely sensed data, researchers must often make a
decision between the amount of ground area covered in a given image scene and
the spatial resolution of the pixels in the scene. Generally speaking, the higher

”@g”srpatial rgsolution ofﬁap '{mage,rthe less ground area that image will contain.
- For studies being conducted on earth systems of regional a}nd/or global scales,
scirentrirstsr quite often have to give up high spatial resolution in order get imagery
which covers more of the earth’s surface. Because of this, imagery from AVHRR

is routinely utilized to conduct studies on regional and global scales.

S 1N A 1] ]
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2.4.2 Processing of AVHRR Imagery

The source of the AVHRR data used in this study varied based on year,
but all of it was received originally in raw form. Image data from 1992-5 was
offloaded from archive tapes held at the Colorado Center for Astrodynamics Re-
search (CCAR). The data on these tapes were backups of transmissions received
by a high resolution picture transmission (HRPT) antenna operated by CCAR,
which receives direct data transmission from the NOAA polar orbiters. Imagery
from 1998 was obtained directly from the HRPT antenna, and the 1999 imagery
was received from the University of Texas which operates its own HRPT antenna.
Additionally, image sets were augmented when needed by imagery downloaded
from the Satellite Active Archive (SAA) website operated by NOAA.

The raw data was then processed in the following manner. First it was
navigated using code written at CCAR which uses ephemeris data from the satel-
lite. The next step was to calibrate the navigated data, the values for which were
obtained directly from NOAA. Because calibration allows reflectances and tem-
peratures represented by imagery from different sensors to be directly compared,
great care was taken to ensure that the most up-to-date calibration coefficients
were used. In a case where it was found that the coefficients had been updated,
the imagery was reprocessed. After calibration, and before any further processing
was done, images which were found to have pixels representing the study areas
which exceeded solar and sensor viewing angles of 30 degrees were eliminated.

The next step in the image processing chain was to correct for the effects that
the atmosphere has on the reflectances collected by the sensor. These corrections
are necessary due to the fact that atmospheric particles and gases can scatter,
reflect and absorb electromagnetic radiation such that the reflectances collected

by a satellite sensor do not accurately represent the energy originating from the
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ground area represented by a pixel. In the wavelength regions being studied in
this thesis, namely Channels 1 and 2 of AVHRR, one must be concerned most
with scattering of energy in the visible wavelengths, and absorption of energy
in the NIR wavelengths. Scattering will generally cause reflectances collected by
Channel 1 to be higher than they should be, and the reflectances collected by
Channel 2 to be lower, resulting in lower NDVI values than would be with no
atmospheric effects.

The algorithm selected in this study to correct for atmospheric effects is a
semi-empirical algorithm called: Simplified Method for Atmospheric Correction
(SMAC) [29]. One non-image derived input which is required for running SMAC
is aerosol optical depth. Because this value is difficult to obtain, an approximation
was used in this application which utilizes visibility data [39]. These were obtained
from the National Climatic Data Center (NCDC) of NOAA. Other non-image
derived inputs required by SMAC are water vapor content and the properties of
the aerosols found in the air. The inputs used in this study represent expected
values for atmospheric conditions in the mid-latitudes during summertime, and
were obtained from a radiative transfer atmospheric correction algorithm called
Second Simulation of Satellite Signal in the Solar Spectrum (6S).

Once atmospheric correction was complete, the images were run through a
cloud detection algorithm which utilizes a split channel technique. In this study,
pixels whose channel 1 8-bit reflectance values were greater than 11% and whose
11-bit channel 4 values were less than 300 degrees Kelvin were considered clouds
and masked to a value of zero.

Once each of the individual five-band images were navigated, calibrated
and atmospherically corrected, the NDVIs were coﬁlptlted. The NDVI images

were then overlaid with a map and nudged, if required, in order to correct for any
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satellite time errors that would cause each image to not register to the map, and
each other. Then, the final step in the image processing chain was the formation
of an NDVI time series for each growing season. The method and rationale for

assembling these time series are discussed next.

2.4.3 NDVI Time Series

As pointed out in Section 2.4.1, one of the attributes of the AVHRR sensor
platform is a high repeat sampling. This characteristic can be taken advantage of,
especially when studying vegetation. If one builds up a time series of NDVI im-
ages, then one can monitor the chéﬁées in the vegetation of interest over time. In
this research, a time series " cube” of 10-day composite NDVI maps was assembled
for each growing season under study.'

Because of the elimination of some images due to solar and sensor acquisition
angles, and some pixels due to the presence of clouds, the sampling rate of images
over a growing season is not regular. As a means of eliminating this inconsistency,
as well as mitigating the effect of cloud-affected pixels which are not detected by
cloud algorithms, a common method of assembling NDVI time series is to create
a series of maximum value composites (MVCs). An MVC can be assembled for
every week, every ten days, every month, etc. Selection of the periodicity of the
composites depends on several factors, such as the duration of the overall time
series. A pseudo-decadal time period was utilized in this study such that each
month had three composites. The first two composites had ten days each, while
the third composite had ten or eleven days depending on the total number of days
that month has.

The rationale for using the maximum-value for a given pixel over the com-

posite period, rather than, say, an average value, is to maximize the chances of
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eliminating the effects of clouds, since the NDVTI of a cloud is lower than for veg-
etation. Another advantage in using the MVC technique is that the effects of the
anisotropic nature of reflectances collected by satellites are minimized. Because
a reflectance measurement is particular to its set of acquisition and illumination
geometries, it would be ideal to take into account the bidirectional reflectance
function (BRDF) for each material type in the image. In this manner, corrections
could be made to allow a more sound comparison among images collected of the
same area at different times [46]. Unfortunately, to implement a BRDF correc-
tion on large images covering many years worth of data is, for many reasons, an
intractable goal. The impact of the inability to accomplish this task can be miti-
gated by using MVCs because the geometries which result in higher NDVT values
are favored, creating a higher level of consistency from image to image. Thus, a
time series resulting from the use of MVC NDVI values may be slightly higher, on
average, than the time series would have without MVCs, but this minimizes the
chances that variations in NDVI value within a time series are due to only BRDF
variations.

A schematic drawing representing the concept of the AVHRR NDVI time
series that were built for each of the years under study in this research is presented
in Figure 2.2. These image "cubes” allow one to look at a single pixel, representing
a particular area of interest, through an entire growing season, and this concept
forms the basis for all further analysis in this research. These time series are used
to define the growth of rice plants, the purpose of which is to couple the image
data with methane flux estimation models so that there is less reliance on ground
truth data. These time series image cubes are also used in an effort to detect rice

growing areas. These topics will each be addressed in the following chapters.
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Chapter 3

Estimation of Rice Biomass Using AVHRR

3.1 Introduction

As mentioned in the Chapter 1, one of the byproducts of rice cultivation
is methane, a gas whose increased levels in the atmosphere has garnered greater
attention recently. The overall goal of this research project is to explore the
relationship between AVHRR imagery and rice production, and to ascertain the
extent to which the data derived from AVHRR can be successfully coupled with
methane flux models. In order to obtain direct input to the models from the
satellite imagery, a relationship must be found between the NDVI time series,
and total aboveground biomass. This chapter describes the data that was used to

derive this relationship, the methodology used, and the results.

3.2 Rice Plant Ground Truth Sources

An excellent source of plant data for this study was provided by Drs. Gowei
Yu and Ted Wilson of Texas A&M University (TAMU). The data was collected
for the 1992 - 5 growing seasons at the TAMU Rice Research Station, located near
Beaumont Texas, and for the 1998 - 9 growing seasons at a farmer’s research field
near El Campo Texas. A referencé rrnrérp is provided in Figure 3.1.

The plant data collected over the six years includes almost a dozen different
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rice varieties that are commonly grown in Texas, and which represent a wide range
of growth characteristics. Included in the data that were collected were LAI and
total aboveground biomass measurements (for the remainder of this report, the
phrase ”total aboveground biomass” will be referred to simply as biomass). The
sampling methodology utilized by Wu and Wilson was a complete randomized plot
design, with each variety having between 9 - 12 plots (depending on the year) for
destructive sampling, and 9 - 12 plots for yield estimation. Sampling frequency
was roughly twice a week at the beginning of the growing season, and roughly
once a week thereafter. A subplot was randomly selected for each destructive
sampling, making sure that each of the sample areas was separated by at least 0.5
meter of undisturbed plants [49].

Because the LAI and biomass data were collected with non-regular time
intervals, the data were sampled for use in this project to match the 10-day periods
of the NDVI time series. If there were multiple samples in a given 10-day period,
then the values were averaged. There were some isolated cases where there were
10-day periods for a given variety that had no data recorded. In those cases, data
points were interpolated based on the percent change measured for other varieties

during the same 10-day period.

3.3 Derived Biomass Estimates

Beginning with the 6 sets of annual NDVI values, and LAI and biomass
measurements, a means of relating any or all of the data was sought. Linear
regressions were calculated between NDVI and LAI, and NDVI and biomass, with
some satisfactory results. But it was important to derive a relationship that while
strictly empirical, made some physical sense as well. As described in Chapter

2, NDVI is a good indicator of the amount of vegetation and the vigor of the
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vegetation. More vegetation, and more vigorous/healthy vegetation is directly
related to-the photosynthetic potential of the plant. It is the photosynthetic
process that is responsible for the production of plant mass. Because biomass
during a growing season is essentially an accumulation process, it was reasoned
that comparing the accumulating NDVI over the growing season should provide
a reasonable proxy for the time series of biomass. Further support for selecting
to estimate biomass rather than LAI is provided by Casanova et al. who state
that ”biomass during the rice-growing cycle is more precisely estimated [using
reflectance data] than LAI” [8]. The plot shown in Figure 3.2 is the cumulative
NDVT time series plotted against the biomass data obtained from the two ground
truth sites for each of the six years. Because during the first twenty days of the
growing season the plants are too small to be driving the NDVT of the pixels, it
was decided to not include the first two 10-day periods in any further analysis.
To get a better sense of the validity of the reasoning given above for relating
cumulative NDVT with biomass, NDVI was plotted against the changes in biomass
from each 10-day period to the next - in essence, un-accumulating the biomass.
For simplicity in the plot shown in Figure 3.3, the averages over the six years are
shown. Except for the 5th and 10th 10-day periods, the trends of the two time
series track each other, providing some added credibility to the supposition that

cumulative NDVI and biomass are related physically.

LRI W
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As a means of assessing the general magnitude of errors in the estimation of
biomass that may be expected with this method, the 7following analysis was done.
First, regression relationships were calculated for the six possible combinations
of five years. Then, the biomass for the year that was left out of the formation
of the regression relationship was estimated from the cumulative NDVI for that
year. Finally, the estimated biomass was compared to the measured biomass. For
example, all of the cumulative NDVT and biomass data were pooled for 1993-1995
and 1998-1999, omitting the data pairs for 1992, and a regression relationship was
calculated. Then, the 1992 biomass was estimated by evaluating the cumulative
NDVI values for 1992 through the regression relationship. This was done for each
of the six years under study. The results of the estimation error are shown in Fig-
ure 3.4, where %error was calculated as: ((Estimated-Measured)/Measured)*100.

The errors in estimating 1992-1995 biomass are quite reasonable, and for

most of the years, the average error is driven by the first couple of biomass es-
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timatgs in the 10-day period. The errors for 1998 and 1999 are, however, more
problematic. As can be noted from the plot presented in Figure 3.2, the 1998
and 1999 data tends to have higher cumulative NDVI values coupled with lower
biomass values than do the 1992-1995 data. In an effort to try to understand
the source of the difference, it was first verified that the rice varieties that were
planted in 1998 and 1999 were also used in some of the data collected for the
earlier years. Additionally, no systematic differences were found in weather, such
as temperature and rainfall, between the two groupings. The last known variable
different between El Campo (1998-1999) and Beaumont (1992-1995) is soil. As
one can note from the information provided in Table 3.1 the soil components for

the two areas are quite different.

Table 3.1: Composition of Soils at El Campo and Beaumont Ground Truth Sites

H-C0nstituent ]El Campo | Beaumont ”

Sand 63 % 25 %
Clay 13 % 32 %
Silt 24 % 43 %

Despite the noted differences in the El Campo and Beaumont NDVI-biomass
relationships, it was decided to continue with the regression relationship formed
with all six years-worth of data since the goal of this research is to derive a method
which may be useful for entire regions. This final regression equation, shown in
Figure 3.5, provides the means of estimating biomass values for the rest of the

study.
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Figure 3.5: Regression Relationship Derived for Cumulative NDVI and Biomass
for 1992-5 & 1998-9

However, in order to further look at the effect of including seemingly dis-
parate regions in a relationship between cumulative NDVI and biomass, the results
from a calculation of a different regression relationship for El Campo and Beau-
mont are now presented. Similar to the analysis related to Figure 3.4 presented
above, the first step was to calculate regression relationships for each permutation
of 3 of the 4 years of data collected at Beaumont. In each case, the year that was
left out of the relationship was used to test that relationship by comparing the
estimated biomass with the measured biomass. The results for each are presented

in Figure 3.6.
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Figure 3.6: Percent Errors in Calculating Biomass Using Cumulative NDVI-to-
Biomass Relationships (1998 and 1999 Removed from Analysis)

As can be noted in Figure 3.6, the average error for the predictions, using
regressions formed with only the Beaumont data, decreased for 1992, 1993, and
1995, while it increased significantly for 1994. In light of this result, it seems that
utilizing a separate regression relationship for the two different locations may be
advantageous. However, the dramatic increase in error for 1994, and the fact that
this method of guaging error levels could not be performed for the El Campo site
(due to the fact that there were only two years of data collected), it was decided to
proceed with the rest of the analysis using the 6-year regression shown in Figure
3.5. For reference, the two regression relationships are provided below in Figure

3.7.
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Chapter 4

Coupling AVHRR-Derived Biomass with a Semi-Empirical Methane

Emission Model

4.1 Introduction

The semi-empirical model discussed in this chapter was developed by Yao
Huang as a part of doctoral research at Rice University in Houston Texas, under
the supervision of Drs. Ron Sass and Frank Fisher. The data used in deriving the
relationships incorporated into the model were collected during field experiments
at the Texas A&M Beaumont Research Station and in pot experiments run on
the Rice University Campus. The model was validated using some Beaumont
field data which were held back from the development data, as well as on data for
several Asian sites. The following is a description of the Huang model, including
the processes it takes into account and how they are modeled, the manner in which

the remote sensing data was coupled with it, and the results that were obtained.

4.2 Methane Flux Ground Truth

The two methane flux estimation models, as will be described in this chapter
and the next, require biomass inputs which until now, could only be derived from
direct measurements. These requirements make application of these models to lo-

cations other than research areas where such data is collected almost intractable.
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A method for utilizing AVHRR NDVI time series to estimate biomass was pre-
sented above. However, in order to assess the success of the method, comparisons
must be made between the flux estimates made by the models (both with and
without the remote sensing data inputs) and real flux data. In order to do this,
methane flux measurements collected during a time for which AVHRR imagery
are available must be utilized.

Methane flux ground truth data was obtained from Drs. Yu Huang and Ron
Sass of Rice University who collected the data at the Texas A&M Rice Research
Station near Beaumont in 1994. The methane flux measurements were collected
from paddies different from the ones where the biomass observations were collected
by Drs. Wu and Wilson. The measurements were collected from four randomly
selected measurement sites using a chamber method. The headspace gas of the
open-bottom chamber was collected approximately twice a week and five samples
were collected for each chamber over a 30 minute period. The gas samples were
then analyzed in a gas chromatograph equipped with a flame ionization detector

in order to obtain the methane mixing ratios [15].

4.3 Huang Model Description

In recognizing the role that the rice plant plays in the production, oxidation,
and transport of methane, the Huang model was formulated with an emphasis on
the growth and development of the plant. For the methane production cycle, the
model considers two sources of substrates for the methanogenic bacteria, the rice
plant itself and added organic amendments. Additionally, some environmental
factors, such as the percentage of sand in the soils, that affect the production
were included. Using data collected in past studies, Huang formed a relationship

estimating the amount of carbohydrates derived from the rice plant with above-
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ground biomass. Another empirical relationship was formed for the amount of
carbo-n substrates made available by organic matter amendments. The final c‘om-,
ponent in Huang’s estimate for the amount of methane that is produced is soil
redox potential.

Methane oxidation and transport are not specifically addressed in the Huang
model in the form of equations. However, use of data from past studies provided
fractional coefficients for the methane production relationships which account for
the amount of produced methane which is immediately oxidized after production,
and then the amount of the remaining methane which is finally transported.

Again, the emphasis of the Huang model is the plant growth cycle. In
the absence of daily biomass measurements to provide to the flux model, Huang

simulates biomass accumulation using a logistic growth equation of the form

I/Vmaz

= 4.1
W 1 + Boexp(—rt) (41)

where

‘/Vmam B VVO
By= ——F7i7— 4.2
0 We (4.2)
and

Winar = 9.46GY 07 (4.3)

Plant aboveground biomass on a given day is W (gm™2). Wy and Wi, are
aboveground bhiomass at the beginning of permanent flooding and at the end of
a growing season, respectively. The variable ¢ is the time scale measured in days
after permanent flood. The constant 7 is an intrinsic growth rate for biomass and
was empirically derived.

In summary, the Huang model bases its estimates of daily methane flux from

rice paddies based on production levels which are empirically derived relationships.
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These relationships require an estimate of the daily biomass which are simulated
using the logistic growth equation shown above. Required inputs are crop yield,
to calculate the W,,,. value, and Wy. However, it was not clear from where the

Wy value was expected to come in future applications.

4.4 Implementation and Results

The first task in implementing the Huang model was to generate the daily
biomass values to use in the model. Information was available to generate the
biomass time series using Huang’s logistic growth curve equations, with a value
for W, being suggested by Dr. Huang.

Next, a means of generating daily biomass estimates from the AVHRR
NDVI-derived 10-day biomass estimates needed to be found. Two methods were
employed. The first was to fit a second-order polynomial through the AVHRR-
derived biomass estimates, and then to use the polynomial equation to generate
the daily values. The second method was to utilize the logistic equation suggested
by Huang but to utilize AVHRR derived W,,,; and W, values.

The three resulting daily biomass curves are shown in Figure 4.1. Also
included for reference on the plot are the biomass ground truth data points col-
lected by Huang, as well as the individual biomass estimates derived from the

AVHRR-NDVI time series.
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Figure 4.1: Comparison of Measured and Daily Predicted Biomass Values

There are several things to note on this plot. First, observing the filled
and open circles, one can note that the AVHRR NDVI-derived biomass seems to
provide a good estimate of actual biomass, adding credibility to the cumulative
NDVI-to-biomass relationship derived for this part of Texas. Another overall
observation that can be made is that all three of the daily biomass curves provide
similar results. Looking next at the daily biomass time series derived from the
logistic relationship using the Huang inputs, one can note that it does an excellent
job of detecting the first thirty days of actual biomass values, but that it begins to
overestimate the biomass after that. The logistic growth curve generated by using
the biomass estimated by AVHRR NDVI clearly underestimates the measured
biomass for the first two-thirds of the growing season, after which it begins to
overestimate. So, on average, the NDVI-derived daily biomass curve seems to fit

the measured data better. However, because methane flux from rice plants is not
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uniform over the growing season, having a better on average fit is not necessarily
better.

Once the daily biomass curves were generated, each was run through the
flux estimation model. In addition to the biomass values, several other inputs
were required. The first is an average soil temperature for the growing season.
This was derived from the average air temperature using the relationship Ts0 =
4.4 + 0.76T,;, provided by Huang. Daily air temperatures were acquired from
NCDC and then averaged, as required by the model. Another required input is
a soil index, SI, which is based on the percentage of sand in the soil using the
relationship SI = 0.325 + 0.0225(%sand). This index is an empirically derived
relationship which is intended to characterize the relative effect of soil texture on
methane production and emission. Finally, a vegetation index, VI, is required.
This scaling factor too is based on an empirical relationship [16] and is intended to
account for relative differences in methane production among rice varieties. Texas
rice varieties are generally assigned a VI of 1 or 1.5 [15]. Recognizing that several
varieties of rice are likely found in the area represented by a given AVHRR pixel, a
value of 1.25 was used for this study. The results of using the three daily biomass
series are shown in Figure 4.2. Also included on the plot are the measured flux

values.
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Figure 4.2: Comparison of Measured Methane Fluxes and Predictions from Huang
Model

Looking first at the daily methane flux curve that resulted from the AVHRR-
derived logistic growth biomass data, one can note that it significantly underes-
timates the flux. This is not surprising, because the method of generating the
growth curve resulted in biomass values that underpredicted the measured values.
Because methane production is dependent upon the availability of substrates, and
because those substrates result from plant growth, predictions of biomass which
are lower than reality, will subsequently result in methane flux underestimation.
Another thing to note with the AVHRR-derived logistic growth biomass input is
that the flux estimates do not decrease at the same rate at the end of the growing
season as the measured values. This can be traced back to the overestimation of
the biomass with a logic similar to the cause of the underestimation of the fluxes
earlier in the season.

Looking next at the daily methane flux curve which resulted from the Huang-
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derived biomass, we note a good fit with the measured flux values throughout the
season. The only criticism with this estimation is that it misses the methane flux
peak at about day sixty and thus begins its decrease too soon.

The daily methane flux curve resulting from the AVHRR-derived polynomial
growth biomass provides an excellent fit to the early season flux measurements,
however, the estimates during the last twenty days of the season are extremely
high. This is due to the fact that the daily biomass estimates are significantly
higher at the end of the season than the measured values. The polynomial which
resulted from the curve-fitting of the 10-day estimated biomass was essentially
linear, with the coefficient of the second order term having very low value. This
suggests that indeed, a logistic equation is more appropriate than a quasi-linear
relationship of biomass over time. From a purely physical standpoint, this is very
logical since plants do not continue to grow infinitely.

Another way to analyze the appropriateness of coupling the Huang model
with remote sensing data is to look at total seasonal methane flux rather than daily
flux. For atmospheric scientists, daily methane flux estimates are not as useful as
total seasonal estimates. To do this, the daily methane flux estimates from the
Huang model were simply accumulated to get a seasonal value. For the measured
methane fluxes, in order to obtain a figure for the total seasonal flux, the daily
values were averaged, and then this average was multiplied by the length of the
growing season. This value could then be compared with the summed daily flux
values for the three biomass time series methods. Also evaluated for comparison,
was the result of a simplified set of equations provided in the Huang model, which
utilize only single values to represent the growing season, rather than performing
the calculations on a daily basis. In this calculation, the average biomass value is

defined to be 55% of W, ...
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As can be noted from the data presented in Table 4.1, both the Huang daily
biomass curve and the AVHRR-derived logistic biomass curve provide excellent
estimates of both total seasonal and average daily methane flux.

Table 4.1: Summary Comparison of Estimated and Measured CH; Fluxes for
Huang Model

Biomass Model || Total Seasonal | Average Daily || Percent

Curve Version || CHy (mg/m?) | CHy (mg/m?) | Error
Huang Full 27,281 354.3 -2%
(Logistic) Simple 26,536 344.6 -4%
AVHRR Full 27,123 352.3 -2%
(Logistic) Simple 28,896 3753 | 4%
AVHRR Full 33,510 435.2 21%
(Polynomial) | Simple 36,067 468.4 30%

[ Measured || 27,720 | 360.0 | |

Additionally, flux estimates from the simplified version of the Huang model
are only slightly worse than those obtained from the full model. Clearly, despite
the fact that the plot in Figure 4.2 showed that the polynomial-fit biomass series
obtained from the AVHRR-derived biomass estimates had such an excellent fit
to the measured fluxes, the overestimation at the end of the season resulted in
estimation errors of, at best, 21%.

The sensitivity of the Huang model to differences in biomass were demon-
strated through interpretation of Figure 4.2. In an effort to understand better the
impact of uncertainty in one of the other primary inputs to the model, soil sand,
the percentage of sand in the soil was varied around the measured value for the

Beaumont site. The effect of these changes on daily methane flux can be seen in

Figure 4.3.
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Figure 4.3: Sensitivity of Huang Model to Soil Sand Content

The effect on total seasonal methane is as follows: 27.3 (g/m?) with the
measured sand of 28%, 22.8 (g/m?) for soil sand content of 21%, and 31.9 (g/m?)
for 35% soil sand. This equates to a difference of 16% change in total seasonal
methane flux estimates for a 25% error in soil sand content. Clearly, accuracy in
soil sand content is very important in using the Haung model to estimate methane
flux.

Soil sand content is not something which is able to be estimated using
remote sensing. However, for this model, using biomass estimated from AVHRR
imagery can replace often inaccurate yield inputs to drive the biomass input. As
an illustration of how inaccuracies in yield can affect methane flux estimates, yield
values for the state of Texas and for Jefferson county, in which the Beaumont site
resides, were substituted for the yield data collected at the test site. The results

of this are shown in Figure 4.4.
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Figure 4.4: Sensitivity of Huang Model to Yield Inputs

These daily flux differences translate into total seasonal flux of 33.0 (g/m?)
of methane using the state yield value, compared with 27.3 (g/m?) of methane
using the actual yield value for the test site. Using the county yield value netted a
total seasonal methane flux of 25.8 (g/m?). It is quite evident that using AVHRR
derived biomass yields better results than do inaccurate yield data.

A summary of the results from the coupling of AVHRR-derived data with

the Huang model will be presented in Chapter 7, as will suggestions for further

research.



Chapter 5

Coupling AVHRR-Derived Biomass with a Process-Based Methane

Emission Model

This chapter describes the use of AVHRR-derived biomass in a process-
based model developed by Peter van Bodegom as a part of doctoral research at
Wageningen University in Wageningen, the Netherlands under the supervision of
Drs. J. Goudriaan, P. Leffelaar, and A. J. M. Stams. The numerous subcompo-
nents of the model were developed using laboratory data and then validated on
several data sets, primarily from Soﬁtheast Asia. As will be described more fully,
the model was altered specifically for this study to take aboveground biomass as
an input. The following sections will describe the model, how it was implemented

in this study, and the results of its application to Texas rice crops.

5.1 van Bodegom Model Description

The van Bodegom model takes into account more subprocesses which play
a role in methane emission from rice paddies and treats these processes in a
more rigorous manner than does the Huang model. This is especially true in the
production and oxidation cycles. Additionally, the model looks at both of these
processes separately for the bulk soil, and the rhizosphere. The rhizosphere is
the volume of soil immediately surrounding the root system, and the rationale

for tréart:m'g it separately from the bulk soil is that it is really the effects of the
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roots that drive the production and provide most of the means for the oxidation
of methane. |

In the equations defining methane production, van Bodegom takes into ac-
count substrate production from mineralization of carbon available in the soil, de-
composition of organic amendments and plant roots, and root exudation. There
are terms in these equations which account for the competition that methanogenic
bacteria has from nitrite, iron, and sulfate reducing bacteria. Thus, knowledge of
the soil beyond the percentage of sand needs to be known. Knowledge of ferric
iron, nitrate, sulphate, and carbon contents is required.

In the treatment of methane consumption via oxidation under normal flooded
conditions the equations are defined to be related to the growth of the rhizosphere
since most of the oxidation occurs there. Additionally, information on flooding
conditions over the growing season are an optional input such that any reintro-
duction of oxygen to the soil can be taken into account.

Methane transport is treated by van Bodegom in a manner similar to Huang,
in that each of the potential transport mechanisms is lumped together into a trans-
port coefficient. However, van Bodegom does have different transport coefficients
for the rhizosphere and the bulk soil. The one major addition that van Bodegom
makes is to take into account the rush of methane that is prompted from the
drying of the soil once the paddy is drained, usually 5-10 days prior to harvest.
This increased transport would also be reflected if the paddy dries out and this
is included in the aforementioned optional input of flooding conditions over the

course of the growing season.
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5.2 Implementation

Originally, the van Bodegom model was developed to account for plant
growth by focusing on the development of the root system, which is responsible for
almost every aspect of the methane emitted by rice paddies. This root growth was
defined by a logistic growth curve which describes the daily root length density
(RLD) during the growing season. Similar to the Huang model, the van Bodegom
model obtains a value for RLD,,,, through the use of crop yield. Additionally, a
harvest index, HI, is utilized, which is defined as a ratio of grain yield to total
above ground dry mass.

For application to this research, Dr. van Bodegom altered the original model
to accept a table of total aboveground biomass values available throughout a
growing season. This adaptation now allows the growth of the roots to be dictated
by the accumulation of biomass. The biomass values used to drive the model in
this study, were the estimates derived from the AVHRR NDVI time series. In
the model, the biomass values are then used to drive the root growth calculations
mentioned above, with one other piece of data being required. This input is called
specific root length (SRL) and it is the ratio of the root length to the dry weight
of the root. This is not a well known value for very many varieties of rice, and no
reference to the SRL of any of the common Texas varieties could be found. Thus,
the default value given in the model was utilized in this study.

Of the other required inputs, some were readily available. The sulfate and
nitrate concentrations were set to zero since these compounds are found naturally
only in trace levels, and would have non-zero values only when the soil is treated
with fertilizers. In the case of Texas, it is known from field treatment logs that the
fields werc treated only with urea, which do not contribute to the levels of these

two compounds. The level of mineralizable carbon in the soil was rather difficult
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to obtain, but a source of the information was finally found and the input was set
to 1.0%. The iron concentration of 0.2%, soil porosity of 50%, and water content

of 25% at field capacity, were all obtained from the same source [7].

5.3 Results

The model was run using these inputs, producing daily flux estimates for
the 1994 Texas site. Both the estimated biomass from the AVHRR NDVI time
series and the measured biomass were run through the model in an effort to
ascertain the sensitivity to differences in biomass. This was an unknown prior
to this research, since the model was adapted specifically for this study. The
differences between the measured and estimated biomass values produced very
little difference in daily methane flux. The plot shown in Figure 5.1 presents the

model run with the NDVI-derived biomass, along with the measured flux values.
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Figure 5.1: Comparison of Measured Methane Fluxes and Predictions from
van Bodegom Model
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From the plot, it is clear that as currently configured, the van Bodegom
model quite accurately follows the trends in the daily methane flux from this Texas
field. Theronly significant deviation from the measured flux is an overprediction
for the first 35 days after flooding. This overprediction, however, greatly impacts
the average daily and total seasonal flux estimates, which were 448.0(mg/m?)
and 34,492(mg/m?) respectively. These values are almost 25% higher than the
measured values of 360.0(mg/m?) and 27,720(mg/m?). So although the shape of
the daily methane flux estimates matches quite closely with the measured flux, it
seems that the overestimation at the beginning of the season very much affects
the seasonal daily average and total flux. The SRL variable which is unknown for
the Texas rice varieties may be affecting this, or more likely, the estimate of soil
iron content may not be well enough known.

As a means to understanding better the effect uncertainty in the input vari-
ables may have on methane flux predictions, three variables were altered and the
resulting predictions were plotted. The three variables selected were biomass, soil
mineralizable carbon content, and soil ferric iron content. SRL was not selected
for analysis since it is unknown at this time what the magnitude of variation might
be. The plot shown in Figure 5.2 represents variation of 10% lower and higher
than the AVHRR inputs of biomass into the model. Changes in daily methane flux
estimates due to differences in biomass are manifested in this model primarily at
the peak of the reproductive phase of the rice crop, around day 55 after flooding.
This clearly illustrates the fact that the van Bodegom model focuses more on the
microbial processes at work in methane emission due to rice crops, and that the

growth of the rice plant plays a secondary role. However, the role seems adequate

_in the sense that the contribution of the rice plant to carbon sources, which comes

into play in the later parts of the growing season, result in good estimates of daily
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methane flux.

Referring to Figure 5;3, one can note that the changes in dailjf methane flux
for various levels of soil mineralizable carbon content are pronounced throughout
almost the entire growing season, with the exception of the start of the season. The
reason that rate of methane flux is not affected at the beginning of the season is
that the methanogenic bacteria are outcompeted for the substrate production re-
sulting from the mineralization of the carbon by the alternative electron acceptors.

Once those acceptors are depleted, the methanogens can utilize the substrates.
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Figure 5.3: Sensitivity of van Bodegom Model to Soil Carbon Content

The effects of varying”soil iirQn conten‘t can be ascertained by looking at the
plot shown in Figure 5.4. Here is presented not only a +- 10% difference in Fe(III)
levels, but: also the Fe for a soil very different from the soil found in this region
of Te)\aq Th_e effect on methane flux, as expected, is more pronounced at the

start of the growing season. This again relates to the competition between the
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methanogens and the alternative electron receptors associated with iron.
A summary of the results from the coupling of AVHRR-derived data with
the van Bodegom model will be presented in Chapter 7, as will suggestions for

further research.
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Chapter 6

Mapping Rice with AVHRR

6.1 Background

In an effort to take advantage of the advances presented in previous chapters,
specifically, using satellite derived biomass to drive methane emission estimation
models, one can envision some type of GIS database with georeferenced infor-
mation on soil types and rice crop locations, which would allow for automatic
inputs. Information is already available to populate a GIS soils layer in such a
database. However, exact locations of rice crops from year to year are pieces of
information that are not available from any sources at this time. For example, in
the United States, crop information is generally disseminated in terms of acreage,
such as number of acres planted/harvest for a given crop. The exact locations
of the fields which are planted are of little consequence to the tabulation of such
crop statistics by state or federal agencies. Some organizations that do care about
exact locations are forced to make such mappings on their own. For example in
Texas, personnel in the offices of the Lower Colorado River Authority (LCRA)
who deal with supplying water to rice paddies must hand-draw reference maps
each year to record which fields are planted and which are left fallow because the
information is not available elsewhere.

With these thoughts in mind, a preliminary investigation was conducted to
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assess a technique with potential for automatically detecting likely rice growing
areas directly from the same satellite imagery used to obtain the NDVI ti-me
series-based estimates of hiomass for the methane flux prediction models. This
technique, called matched filtering, is described in this chapter and the results of

its application in this research project are presented and discussed.

6.2 Methods and Materials

6.2.1 Matched Filtering

Matched filters were originally developed to detect known signals in the
presence of noise [9] and have traditionally been used in signal processing appli-
cations, such as voice detection/recognition. A logical extension of this was an
attempt to detect a known signal within a group of unknown signals. It is in this
spirit that the filter has been applied to satellite imagery.

- One application of a matched filter to imagery is to utilize known spatial
pat‘fejrtnsi to detect speciﬁrc targetsr,rirrf :preSent in the scene, against various back-
grounds. In this application, as well as in the signal processing application, the
maﬁéhed filter works by taking advantage of properties of spatial information
transformed into the frequency domain. For example, if one applies a Fourier
transform t;) both a known signal and épgr;knéwn éignal, the convoliltion of the
two will result in a delta function if the two signals are perfectly matched. Peaks of
decreasing amplitude and increasing width will result from increasingly dissimilar
signals. In this way, one can obtain an indication of how closely the two signals
match, or do not match, by the result of the convolution. Figure 6.1 illustrates,
conceptually, how the matched filter searches for a reference signal, shown in (a),

in a noisy signal, shown in (b), and the output of the matched filter operator, in

(c).

i
!
I
!
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(a) Reference (b) Reference+Noise (¢) Qutput

Figure 6.1: Schematic of Matched Filtering Inputs and Output in Frequency
Domain[9]

In this study, instead of using a known spectral signature to detect likely rice
growing areas, a known temporal signature, in the form of an NDVT time series, is
used. Because cropping conditions change from year to year, the reference NDVI
time series will also change from year to year. Thus, it would not be possible
to build a reliable library which would be applicable to each growing season of
interest. Instead, a reference time series, or spectrum, would need to be defined
for each year under study.

Unlike the spatial matched filter, the spectral matched filter does not trans-
form the image data into the frequency domain. Instead, the filter performs and
considers the results of linear transformations which are commonly used in the
analysis of multispectral data sets. Rather than coding a matched filtering algo-
rithm, an existing implementation of this filter was used from the Envi software
package available from RSI Inc. The following summary of the mathematical basis
used in the Envi software now follows.

According to Harsanyi and Chang [12], it is possible to isolate a signature of
interest from undesired signatures through the development of a specially designed
linear operator. This operator could then be used on any given mixed pixel, r of

a multispectral image,

r(z,y) = Ma(z,y)+n(z,y) (6.1)
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where M(x,y) is a matrix with linearly independent columns of p different spectral
signatures and rows representing each of the bands under consideration. The
a(x,y) is a px1 vector with the weights of each spectral signature in the pixel,
and n is a vector representing random noise for each band. If the last column
of M is assumed to be a spectrum of interest, and called d, then (6.1) can be

rewritten as
r = dop+Uvy+n (6.2)

where « is the fraction of the spectrum of interest, U is a matrix with linearly
independent columns of p-1 spectral signatures, and ~ is a vector which contains
the first p-1 values of a.

In order to develop the matched filter such that it eliminates the effects of
the unwanted spectra represented by U, the mixed pixel r must be projected onto
a subspace orthogonal to U. In this way, the resulting vector will contain only
energy associated with the spectrum of interest, as well as random noise.

Harsanyi and Chang continue by defining this operator to eliminate the

unwanted spectra to be
P = (I-UU% (6.3)

where U# = (UTU)~'U7 is the pseudoinverse of U. As opposed to minimizing
the least squares error, this operator instead minimizes the energy associated with

the spectra which are not of interest. Using P to operate on (6.2) yields
Pr = Pdop +Pn (6.4)

The next step in the construction of the matched filter is to construct x’,

an operator which maximizes the signal-to-noise ratio (SNR).

x"Pr = x"Pdap +x"Pn (6.5)



25

In order to find a value which maximizes x? one must maximize the signal-to-
noise-energy ratio, A

x"Pdogd P x of xTPddTPTx
" xTPE{nnT}PTx 2 xTPPTx

(6.6)

where E{.} denotes the expected value. Maximization of the quotient A can be

generalized to an eigenvector problem of the form
Pdd’PTx = APP”x (6.7)
where A = A(a2/0?). The result of the maximization is
xT = xd” (6.8)

where k is an arbitrary scalar.
Finally, according to Harsanyi and Chang, substitution of (6.8) into (6.5)

yields the overall matched filter operator
qf = d"P. (6.9)

When this matched filter operator is applied to each multiband pixel of an image
being searched, a single band image results with the value of each pixel being a
measure of the presence of the signature of interest. [12]

Included in Figure 6.2 is a schematic representing the matched filter results
for three different pixels. In (a) the NDVI time series of the unknown pixel from
an NDVI time series cube, exactly matches the reference in (b) which would result
in a relative match value of 1 being assigned to the pixel location of the unknown
time series in the matched filter output ”image”. In (c) is shown an NDVI time
series for another unknown pixel in the same image cube. Comparing it again to
the reference time series in (d), the matched filter would assign a very low relative

match value. In (e) is shown an NDVI time series of a third unknown pixel. When
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compared to the reference time series, again shown in (f), a fairly high relative
match value would be assigned to that pixel location in the matched filter output

image since it so similar to the reference.
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6.2.2 Ground Truth Data

number of acres of rice which were planteqd for each of the six years are included
in Table 6.1, as are the approximate number of AVHRR pixels which represent

the area planted with rice.



vl

58

(g) Unknown

(h) Reference

o5 a3
- .
L ..
"':ll 4+ 3 L] " W u(l 4; 5 5 ] [}
10day Period. 16-day Perina
(a) Unknown (b) Reference (c) Relative Match Value
o n4s
a3 LA
a3t ®
[ nls
HL‘P u~ll 3 4 H] "w +
N
(d) Unknown (e) Reference (f} Relative Match Value
08— —— — T 4 + ay —
g . g . O 9 1
{7 o
I S S B I by
1day Perod 19dny Peviod

(i) Relative Match Value

Figure 6.2: Schematic of Matched Filtering Inputs and Outputs Using NDVI Time
Series



Table 6.1: Acres of Rice Planted and Number of AVHRR Pixels Represented

Year | Number of Acres | Number of 1.1km Pixels
Planted in Rice | Representing Acres of Rice
1992 353,000 1180
1993 298,000 1000
1994 354,000 1190
1995 318,000 1065
1998 268,000 900
1999 245,000 ' 820

of pixels expected for rice cropping acreage for that year. Although these cutoff
values by themselves are not important, the fact that they ranged from 0.556 -
0.818, reinforces the point that indeed each application of a matched filter yields
relative and not absolute results. As an example, the plot shown in Figure 6.3 is
the histogram for all of the relative match values for land areas in 1993. It is from

histograms like this that the relative match thresholds were selected.
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Figure 6.3: Histogram of Relative Match Values for Land Pixels in 1993

6.3 Results and Discussion

The application of the Envi-based matched filter, using the crop statistics
thresholding criterion described above, yields mixed results. The accuracy of the
method can not be quantitatively measured because, at this time, not enough
ground truth is available to do so. However, qualitative assessments can be made
and will be described in this section. Suggestions for further assessments with the
availability of ground truth, as well as different approaches will be discussed in
Chapter 5.

We begin with making some observations about the maps presented in Fig-
ure 6.4 on page 61. Each of the maps in the subfigures represents the rice growing
fegién_pf rTexras, and the 'pixelsrwhrich,met the relative match value threshholds
are shown in black. The first observation one can make is that the majority of

the pixels which are the likeliest match to the rice NDVI time series are clustered
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(e) 1998 (f) 1999

Figure 6.4: Matched Filter Results of Likely Rice Cropping Areas for 1992-5 and
1998-9
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in the coastal areas of the region, which is indeed where the rice is grown. Few,
if any, pixels in the upper left region of the mépé were selected as having a high
degree of match. Since this part of Texas is generally uncultivated grassland,
this observation indicates a good amount of promise for the matched filter in this
application.

Closer inspection, however, reveals that the locations of the concentration
of the matched pixels shift rather dramatically from year to year. If familiar with
the reference map shown in Fig. 3.1, one can note which counties have the highest
concentrations. The following table summarizes these observations for each year
and also provides those counties’ rank out of the eighteen rice producing counties
in Texas (in terms of acreage planted). A rank of one would denote the highest

producing county.
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Table 6.2: Counties with Concentrations of Matched Rice Pixels

Counties with Rank of the County as
Year | High Concentration Rice Producer in
of Matched Pixels | Texas (of 18) for that year
1992 Harris 10
Wharton
Ft. Bend
1993 Jefferson
Chambers
1994 Matagorda
Jackson
Non-rice producing
1995 Jefferson
Chambers
1998 Wharton
Colorado
Non-rice producing
1999 Wharton
Colorado
Non-rice producing

o wl| o wsll ol =

(CT I | e St

DO h=t

From Table 6.2, one can see that three of the six years had significant num-
bers of pixels which the matched filter operator identified as having a high likeli-
hood of being rice, but were outside of the rice cropping areas of Texas. Addition-
ally, only a handful of the top rice producing counties consistently had significant
numbers of rice cropping pixels attributed to them. So although at first glance, it
would appear through visual inspection that the matched filtering operator does a
reasonable job in detecting likely rice cropping areas, only a rather cursory quali-
tative look strongly indicates that this technique, as it is currently implemented,
does not yield accurate enough results for the intended purpose.

In trying to assess whether or not the matched filter operator has unreal-

ized potential in utilizing temporal signatures, rather than the more well-proven
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spectral and spatial signatures, the weaknesses of its current implementation must
be explored iﬁ order to see if there ére ways to potentially overcome them. The
weaknesses can fall into one of three categories: the source imagery of the tempo-
ral signature, the selection criterion for the relative match value cutoff, and the
use of the temporal signature itself.

In assessing the source imagery of the temporal signature, namely the AVHRR
sensor, one must consider the attributes of the sensor itself, as well as the fea-
sible processing that can be done for large ground coverage applications such as
this. In terms of the sensor, the rather gross spatial resolution is clearly an issue.
Although the matched filter operator is designed to be applied to cases of mixed
pixels, the relative contribution of a spectrum of interest has a higher potential
to be occulted in a pixel covering a larger ground area. Because of the greater
potential for mixed spectra, even pixels having mid-range relative match values
due to the presence of the spectrum of interest would not be likely to have a high
enough match value to pass the cutoff threshold, and would thus be eliminated
from any final count. Obviously a pixel which has a smaller footprint would have
greater potential for allowing the spectrum of interest to differentiate itself from
other spectra.

The relatively recent launch of the AVHRR follow-on mission, the Moderate
~ Resolution Imaging Spectroradiometer (MODIS) will go a long way in improving
on the spatial resolution of NDVI products (from 1.1 km for AVHRR to 250 m for
MODIS) while maintaining the superior temporal resolution. This improvement
will help to accomplish goals such as the development of image segmentation op-
erators which can be applied to tasks which require increased levels differentiation
among vegetation types.

The issue of which pre-processing techniques are used in this study for the
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AVHRR imagery may also have an impact on the successful application of the
matched filter operator. Because this operator maximizes differences between the
reference spectrum and the other spectra in the image, pixels which actually have
a similar temporal spectrum to the reference, but which have even one ten-day
period in which the pixel was cloud-covered, will result in a low degree of match
for that pixel. Therefore, a method of reconstructing missing data values in an
NDVT time series which are due to clouds would need to be found in order to
increase the chances that the pixel would be correctly identified. Proposed in the
recent literature is a new technique for doing so which uses the Fourier transform
of the NDVI time series to detect the clouds, and then utilizes a statistical method
for reconstruction of any missing portions of the time series [30]. Successful ap-
plication of such a method would allow the matched filter to detect more true rice
growing areas since the threshold would no longer eliminate those pixels in favor
of some false positives.

The issue of the selection criterion for the cutoff value for the relative match
value could also contribute to the less than desirable results which were obtained in
this application of the matched filter operator. The idea of guiding classifications
with agricultural statistics has been explored with some success in the past (see
[47]) so its use here is not being questioned. However, the way in which the
statistics were utilized in this application may be able to be improved. In this
study, since it is known that rice cropping is done only in the Gulf coast area of
Texas, imagery from the entire state was not included. However, significant areas
where it is known that rice is not grown were still included in the input to the
matched filter operator. It is conceivable that a GIS system could be utilized to
build a mask to eliminate those counties which are not involved in rice cropping,

such that the matched filter operator is applied only to those counties which are.
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Then, the agricultural statistics could still be utilized in the same manner to select
the relative match value threshold, presumably wi»th better results.

Finally, the issue of the efficacy of using a temporal reference spectrum for
rice from one region and expecting it to adequately characterize rice in another
region should be addressed. As discussed previously, there were two ground truth
sites in two different parts of the rice growing region of Texas. As shown in the Soils
Table presented in Chapter 3, these sites are situated on two distinctly different
soil types. One can see in Figure 6.4 on page 61 that the 1992-1995 matched filter
outputs did not effectively highlight the rice cropping areas around El Campo,
while the 1998-1999 matched filter outputs did not effectively highlight the rice
cropping areas around Beaumont. A question that should be asked is if it is
possible that these soil differences, and the differences in cropping practices which
may result from the difference in plant requirements, can cause enough differences
in the rice plants that the NDVI time series for the two are too different to be
used to detect the other. In an effort to better understand this, a closer look was
given to the NDVT time series, shown here in Figure 6.5, for each of these growing

seasons.
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In trying to use the information in the plot to support the idea that the

NDVI time series are just too different for one region to use in another region,

one would expect noticeable differences between the 1992-1995 Beaumont spectra

and the 1998-1999 El Campo spectra. Instead of detecting noticeable differences

between the two groups, one can note the each of the NDVI time series pre-

sented has unique features. There seems to be no Beaumont grouping and no El

Campo grouping. Upon further consideration, because the matched filter operator

responds to relative factors within an image cube, one can not expect that differ-

ences in results from case to case can be tied to differences among their respective

reference spectra.



Chapter 7

Summary and Conclusions

7.1 Coupling AVHRR Data with Methane Emission Models

In this research, the promise of coupling satellite remote sensing image data
with biogeochemical models of methane from rice was demonstrated. The crux
of the demonstration was relating a satellite image derived value, NDVI, with a
plant parameter, biomass, that could be used to drive the models. The empirical
relationship between cumulative NDVI and total aboveground biomass provides a
satisfying approximation for biomass that also has some rationale from a physical
standpomt - |
- The hmltamons of the relatlonshlp that was derived are, however, not neg-
'hgxble Flrst among them is the fact that the study area was limited to Texas
and the rice var1et1es and growmg season are not hkely to be directly applicable
: to areas out81de of the Gulf of Mex1c0 reglon of Texa,s and perhaps Louisiana.
If future study in other geographic areas is undertaken, one priority should cer-
| tamly be an attempt to 1dent1fy sources of plant data in other regions, such as
Ca,lifornia, and of course, in Southeast Asia. If such data were acquired, and it is
found that indeed, the cumulative NbVI-to-biomass relationship derived in this
study does not hold, then perhaps a limited database of relationships could be

developed such that future analysis could select the relationship appropriate to
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the region under study.

One difficulty with utilizing an accumulating variable, in this case, cumu-
lative NDVI, is that changes in lengths of growing seasons over the compositing
rate (in this case, 10 days) render the relationship unusable. This problem was
already encountered in the course of the research performed for this study, as will
be described here. An excellent source of methane flux data was acquired under
the direction of Dr. M.A.K. Khalil over seven years in the Sichuan Province of
China [19]. With the view to utilize this data set, AVHRR imagery was acquired
for three of the seven years that Khalil collected methane flux data. It was as-
sumed that the cumulative NDVI-to-biomass relationship derived and described
in Chapter 3 could be utilized to estimate the biomass of the Chinese rice using
the NDVI time series of the China imagery. However, it was discovered that the
length of the growing season for rice was over 20 days longer in this study area
of China than in the Texas study areas. Thus, the cumulative NDVI-to-biomass
relationship would use two extra NDVI MVC composites in accumulation, pro-
ducing biomass values that would likely be much higher than in reality. Assuming
that the biomass values for the Chinese varieties are similar to the Texas vari-
eties, the plants simply take longer to grow. Thus, a cumulative NDVI to biomass
relationship for the China area would have a considerably lower slope than the
relationship derived for Texas.

Another difficulty that would certainly be posed by forming a cumulative-
based relationship will occur in regions where more than one rice crop is grown
per year, such as in the southern provinces of China where up to three rice crops
are grown per year. Because of this, the accumulation of NDVI over the whole
year would cease to be linear.

Assuming that the methodology of obtaining biomass using cumulative
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NDVI from AVHRR can be successfully applied to areas other than Texas, the
use of the Huang model, and éven the van Bodegoh model with improved access
to accurate inputs, show great promise in being able to estimate methane emis-
sion, both on a daily flux basis and on a total seasonal flux basis. Eliminating
the dependency of obtaining a yield value for estimating biomass, used in both
the Huang model and the original van Bodegom model, is an important result
of this research. Crop yield values, although generally easy to obtain, can vary
tremendously. National- and state-level yield values are averaged to such a great
extent, that it would be unwise to rely on them at the county- and certainly not
at the pixel level. Obtaining county-level yields are much more difficult, and often
rely on voluntary information provided by individual farmers. Estimating biomass
from satellite imagery instead of yield seems like a much better method, and one
which, as shown in this research, has the potential to result in as good an estimate
of methane emission from rice as areas where yield information is well known.
Although this study was not intended to directly compare the results of the
two models, it is appropriate to discuss the implication that the Huang model
estimated methane emission better than did the van Bodegom model. This con-
clusion is the result of comparing average daily methane fluxes and total seasonal
fluxes obtained from the two models with those fluxes which were measured. The
flux estimates obtained from the Huang model seemed to be more closely matched
to the measured values than did the van Bodégom estimates. However, caution
should be made when makingrfhese types of comparisons. Because the methane
flux measurements were made on only 17 of the 77 days that the paddy was
flooded, there may be an over- or underestimation of the daily average and total
seasonal fluxes resulting from small time-scale flux changes being missed through

undersampling. Additionally, the greater difference between the van Bodegom es-
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timates and the measured values may be due to imprecisions in the nqn—biomass
inputs, especially the mineralizable carbon and iron contents of the soil. An addi-
tional item to note is that the Huang model, since it is more empirical has likely
been better tuned to this study area. As a result, the model may not perform
as well in other rice cropping areas. Finally, it should be pointed out that there
was only one year of methane flux data available. Additional years of data, with
different cropping conditions, would better provide understanding of the strengths
and limitations of each of the models in relation to using AVHRR derived biomass
inputs.

This brings up the final summary point, which is that although one of the
major ground truth inputs, namely crop yield data, has been able to be replaced
with a satellite derived input, each model still requires other inputs. Some of
the inputs, such as average air temperatures, are fairly easy to obtain. Others,
such as soil components, are not. Still others, such as variety index and specific
root length, may only be estimated because the information does not exist at all.
Work must continue to create better and more reliable databases of the necessary
information which already exists in other places, and to work with scientists who
are in a better position to populate the databases for information which does not

yet exist.

7.2 Mapping Rice with AVHRR

Because of the promise demonstrated in this research to drive methane flux
estimation models with biomass of rice plants derived from satellite data, a means
to identify the locations of rice paddies from year-to-year would be invaluable. The
matched filter method explored in this research is not up to that task in its present

form and implementation. But the idea should not be given up entirely. Several
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suggestions for modifications to the manner in which the filter is implemented
were discussed extensively in the pfevious chapter. These include constraining
the image area searched using crop statistics.

Another feature that should be added to the information that the mapping
routine provides is growth season-related estimates, such as when the rice crop
started, when it was harvested, etc. These types of dates are required for the
implementation of the satellite derived biomass in the methane emission estima-
tion models. Although the rice planted in each region likely maintains the same
planting-to-harvest duration, the time at which planting occurs varies from year
to year, based on weather conditions. In order to accumulate the proper NDVI
time series, the start of the cropping season needs to be known. This type of
information should be determined at the same time that the rice cropping areas
are being detected.

Overall, the potential for increased understanding of the contribution of rice
paddies to the atmospheric methane budget through the use of AVHRR satellite
data has been demonstrated. Future research and study will help to realize the

potential, and would be time and money well spent.
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